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What if the gravitational constant G is not a true constant?
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Abstract: It 1s universally accepted that there are three fundamental physical constants in the
universe, Newton’s universal gravitational constant G, Planck’s constant £, and the speed of
light ¢. The constancy of G 1s built into the existing models of cosmic evolution, including the
Big Bang model of the universe. Although there 1s little doubt that # and ¢ are universal
constants, the same degree of certainty cannot be attributed to . So an interesting question 1s:
What if & 1s not a true constant but is a function of cosmic time? In this short note, we explore
the consequences of a nonconstant G on the cosmos. The proposed nonconstant ¢ model of
the cosmos 1s consistent with modern observations of the cosmic evolution, which strongly
support a still-accelerating universe dominated by dark energy, requiring a nonzero
cosmological constant A in Einstein’s Field Equation. Although there is incontrovertible
evidence from the Wilkinson microwave anisotropy probe (WMAP) that the universe 1s very
nearly flat, current Big Bang models require the cosmological constant to remain unchanged as
the universe expands. The model proposed here allows for a changing ¢ and requires the
cosmological constant to decrease with cosmic time as the universe expands. In all other

aspects, 1t 1s consistent with modern observations and existing Big Bang models. © 20172
Physics Essays Publication. [DOI: 10.4006/0836-1398-25.2.282]

Résume: 11 est universellement reconnu qu’il ya trois constantes physiques fondamentales dans
I'univers, la constante gravitationnelle universelle G de Newton, la constante de Planck £, et la
vitesse de la lumiére ¢. La constance de G est intégrée dans les modeles existants de I'évolution
cosmique, y compris le modele du Big Bang de 'univers. Bien qu’il y ait peu de doute que # et ¢
soient des constantes universelles, le méme degre de certitude ne peut étre attribue a G. [l y a
donc une question intéressante: Que faire s1 G n’est pas une vraie constante, mais est une
fonction du temps cosmique? Dans cette courte note, nous explorons les consequences d'un G
non constant sur le cosmos. Le modele & propose non constant du cosmos est en accord avec
les observations modernes de l'evolution cosmique, qui soutiennent fortement I'idee d'un
univers encore domineé par l'accelération de I'énergie sombre, nécessitant une constante
cosmologique A non-nulle dans I'équation du champ d’Einstein. Bien qu’il y ait des preuves
irréfutables de WMAP que 'univers soit presque complétement plat, les modeéles actuels du
Big Bang requiérent que la constante cosmologique reste inchangée tant que 'univers se dilate.
Le modéle propose ici permet de changer G et exige que la constante cosmologique diminue
avec le temps cosmique tant que 'univers se dilate. Dans tous les autres aspects, 1l est coherent
avec les observations modernes et des modeles existants du Big Bang.

Key words: Big Bang Model; Cosmological Constant; Einstein’s Field Equation; Newton's Gravitational Constant;
Cosmic Evolution:; Fundamental Physical Constants; Models of the Umverse: Inflation Theory; Nucleosynthesis;
Cosmic Microwave Background.

l. INTRODUCTION

It 1s universally accepted that there are three
fundamental physical constants in the universe: the speed
of light ¢ (~2.998x10°m s~ '), Planck’s constant #
(~1.055x107* m? 'keg) and Newton’s gravitational
constant G (~6.674x10 ""'m3¥s 2kg™'). The constancy
of G is built into existing models of cosmic evolution,
including the Big Bang model. Although there 1s little
doubt that A and ¢ are unmiversal constants, the same
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degree of certainty cannot be attributed to . There have
been some suggestions in literature, starting with Dirac,'
that ¢ may not be a true constant. So an interesting
question 1s: What if & 1s not a true constant, but a
function of cosmic time? What are the implications to the
cosmic evolution?

As Max Planck pointed out, 1t 1s possible to define
fundamental units of length, mass, and time based on
these constants: £p=(AG/c*)'?, mp=(he/G)"?, and
rp:(ﬁ-Gﬁj)'ﬁﬂ called Planck length, mass, and time,
respectively. However, note that 1t i1s impossible to form a
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dimensionless number out of these three constants:
Another fundamental constant, the mass of a nucleon,
m,, must be brought in. N=Gm’ /¢ is dimensionless and
therefore a variable G implies variable M. The current
value of N is 5.89x107%?_ It also means that the Planck—
Boltzmann temperature defined by Kirwan,” 3=(fic’/
Gk3)1/2, where kp=1.3806503x10"% m* kg s> K/,
would also be a function of cosmic time. Current value of
< is 1.42x10%.

Since Dirac’s original work, there has been sporadic
interest in variable G models of the Cosmos*™ (see also
the references in Singh and Singh® for a list of earlier
work on the topic). Momeni's work® on Brownian
motion suggests that G decreases with time. He also
summarizes the plausible values of G/G from recent
observations. Singh® considered time-dependent G and A
in the early inflationary and radiation-dominated uni-
verse and suggested a model in which A~7 “ but G could
be either proportional or inversely proportional to t.
Many other investigators have considered time-depen-
dent A and hence time-dependent &, including Jamil and
Debnath.” who present a model in which A ~ H?. where
H is the Hubble parameter. Singh and Singh®* explore a
nonconstant G cosmological model with A ~ H” also,
but with matter in the form of a viscous fluid. However,
to our knowledge, no one has explored the possibility of
matching the radiation-dominated epoch to the matter-
dominated epoch in the context of a variable G.

In the interest of readers not familiar with the
subject and to put the new hypothesis in a proper
context, we provide here a brief summary of existing
models of the universe. Einstein’s Field Equation (EFE),
which 1s the basis of all models of cosmic evolution, can
be written as (including the cosmological constant A
Einstein introduced 1n an ad hoc manner but withdrew
later):

Rij—(1/2)Rgiji—Agi=Gi—Agij= {Sﬂﬁfﬂﬂjﬂﬁh (1)

where R is the Ricci curvature tensor (units of m ), g;;
1s the metric tensor, R is the scalar curvature (units of
m %), and Sij 1s the stress-energy tensor (units of Pa or
Nm_z}; A has units of m 2 and SHG/H' has units of N~ .
[t is important to note that the derivation of Eq. (1) does
not require the assumption that G is a constant.

It 1s well known that Einstein added the cosmolog-
ical constant term in Eq. (1) to obtain a steady-state
universe, but once Hubble’s observations proved that the
universe is expanding, he deleted it, asserting that it was
the greatest blunder he ever made. Incidentally, we
aerodynamicists know that Einstein’s airfoil, derived
with no regard to the behavior of the boundary layer in
an adverse pressure gradient, was a real mistake; the
cosmological constant was not. However, recent obser-
vations suggest that the universe 1s not only expanding,
but the expansion rate i1s increasing. An accelerating
universe requires the reintroduction of the cosmological
constant term in EFE.
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Il. COSMOLOGICAL EVOLUTION

The two basic equations governing the evolution of
the cosmos are’

E 1_|_kc*2_m.'3_8n{}' 2)
R} TRE_ 3 3O

2R (R “ ke? 8nlr

?+(ﬁ) +—or—Ad=-—rp, (3)

where £ 1s the curvature of space, p 1s the density, and p 1s
the pressure. Dots denote derivative with respect to
cosmological time ¢. Equation (2) is the Friedmann
equation. Note that neither Eq. (2) nor Eq. (3) involves
the assumption G = constant, and so both equations are
valid for a time-dependent G also. Substituting from Eq.
(2), Eq. (3) can also be written as

p+35) (4)

Because the term on the right-hand side of Eq. (4)
involving G 1s negative definite (at least for the post-
inflation period), without the cosmological term, R<O0,
and the universe would decelerate. In other words,
gravilation leads to a decelerating universe, but modern
observations indicate a still-accelerating universe. This of
course means that the cosmological constant must be
positive and big enough to overcome the effect of
gravitational attraction.
The mass conservation equation is’

p+3(p+p/)(R/R)=0. (5)

Equation (5) can be derived from Eqgs. (2) and (3) by
differentiating Eq. (2) to obtain R and using it to
eliminate R from Eq. (3). The derivation, however,
requires that the cosmological parameters A and k and
the Newtonian gravitational parameter ¢ not be func-
tions of time. If they are, Eq. (5) must involve the time
rate of change of these quantities. The equation of state 1s
assumed to be of the form

p=wpc’, (6)

where w=1/3 for relativistic particles (radiation) and
hence radiation-dominated early universe, and w=0 for
nonrelativistic particles (dust) and hence matter-dominat-
ed universe. Also, w=1 for a stuff fllid and —1 for a
vacuum fluid (during inflation). With the use of Eq. (6),
Eq. (5) becomes

p/p==3(1+w)(R/R). (7)
[Integration of Eq. (7) yields

ﬂ““‘*—’R_B[I_H].:IWR_H? {8)
where
n=3(1+w). (9)

Note that n=0 during inflation.
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For the matter-dominated universe (n = 3),
P~ R 3

For the radiation-dominated universe (n = 4),

p~R*. (11)
Because
aT*~pc?, (12)

where T 1s the temperature of the universe and o i1s
Stefan—Boltzmann constant (~5.6704x10"*Wm=2 K4),
For radiation-dominated early universe, 7~R~'. This
equation is the basis® for the Big Bang nucleosynthesis
(BBN) and other aspects of the early evolution of the
universe during the Big Bang.

Interestingly, the equation of state during the
“inflation” phase of the Big Bang, during which the
universe expanded exponentially by a factor of 10°° in an
infinitesimal time (~107"> s) from a size smaller than an
atomic nucleus to a macroscopic size of the order of a
meter, must be such as to make the gravitational term on
the right-hand side of Eq. (4) positive.'” The proposed
equation of state during inflation is

p=V(¢p)=—pc’, (13)

so that w=—1 and therefore n=0 and p=constant during
the inflationary phase.

lll. MODELS OF THE UNIVERSE

Hubble’s law states that the velocity of stars and
galaxies in the universe 1s given by

v=H(1)d, (14)
where H=R/R. Substituting into Eq. (2), we get
kc? f‘hk.-:‘2 8l
EHZy =3 =g P (15)

The value of H at the present epoch, Hy 1s known as the
Hubble constant and immense efforts have gone into
measuring it accurately. The most accurate measurements
are from the Wilkinson microwave anisotropy probe
(WMAP), which gives a value of 73.5+3.2km s~ Mpc ™'
Combined with other recent and advanced astronomical
measurements,'' we get

Hy~70.8*1.6kms ! Mpc1~2.29045x 107 1% 571
(16)

where 1 Mpc=3.08568x10** m. Equation (15) can be

written as

Hl ZHE

(17)

where subscript 0 denotes the current value (note that we
have introduced the subscript 0 for G and A, to allow for
the possibility that they may be functions of cosmological

G\ (p\(Pr +A0-:.'2 AN k2 (Ry\’
"1\Go/ \p.) \po) 3H; \ANo) HIRZ\ R/ |
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time ¢). The critical density of the universe has been
defined as

3H;
.PﬂL] S?TG[]

Per~9.416x10 2 kgm 3, based on the most recent values
for Gy and Hy. The Hubble constant Hy and the critical
density p. are the two most important parameters in
cosmic evolution. If we put

(18)

k W A 2
Q=20 o=lC o= (19)
Pt Hi R 3H
we gelt
: a 1/2
R G p Ro\~
H=—=H Q,, -0 Q,
o) 0 (%)
(20)
Normalizing Eq. (20),
mZR/R[}, Tszf,;, (21)
and choosing the normalizing time ¢, so that
2
fn—m (22)
gives
1/2
.f P A %3 2 Q“ﬁ‘
“LE -3 MER{( ) (F"l;}) Q, " _I_ﬂm‘] A
With the best known value for Hy,
1,~9.2071Gyr(2.906x10's) (24)
Because
p/po=(Ro/R)"=R"", (25)
Eq. (23) becomes
a’iﬁ‘ 2 . n S 2, SN K
mSR |:(C'{}) R ﬂm 0, " -Qm j (26)

and Eq. (20) holds for both radiation- and matter-
dominated universes. Note also that

Ro/R=R '=14z, (27)

where z 1s the redshift. Equation (27) can be used to
express Eqgs. (20) and (26) in terms of the redshift, which
can be measured accurately.

A. Matter-dominated universe

For the matter-dominated universe n = 3, and Eqgs.
(20) and (25) give

(2o (8) (8] 0
(28)

Applyving Eq. (28) to the present epoch (H=Hy, G=Gy,

; 1/2
R

H=—=H
R 0
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R=R;) gives
ﬂm_ﬁ.ﬂ'_l_ﬁﬁ:-l . (29)

where superscript (0 that would indicate the current epoch
has been omitted for simplicity. Equation (26) becomes

dR 2 j 3 Qe , ]
E—Wﬁf”;‘*[(aﬂ)““‘ o, *ﬂm] - G0

Note that for a flat universe (Q;=0) preferred by most
cosmologists and supported by modern observations,
such as the angular fluctuation spectrum from WMAP,

‘ﬁe zﬂm‘:[(cﬂ)%—“ g“‘] , (31)

where

Q,+Q5\=1, (32)

with the additional condition k=1 for

T=Tty=1y /s (33)

If we assume G/Gp=1, then most recent observations of
the cosmos such as WMARP appear to be consistent with

=0, Q,,=0.27, 2,=0.73. (34)

1. Einstein—de Sitter universe model
The Einstein—de Sitter (EdS) universe requires

Q=1 QA =0, Q¢ =0, (35)

and therefore for the EdS universe, putting G/Gy=1, Eq.
(30) becomes

dR [di=(2/3)R™'/, (36)

so that ®¥*=1 or, equivalently,
R=%/3, (37)

The current age of the EdS universe ty=t¢,~9.207
Gyr (2.906x10'7s). This does not fit well with observa-
tions. There appear to be galactic clusters that are older
than this age, which suggests that the age of the universe
is much higher and EdS model is incorrect.

Incidentally, Einstein used Eq. (3) and mnvoked a
static universe by putting R=R=0 and A= k/R> or
equivalently, €;=3Q,, to obtain the radius of a static
universe R;;[_.:(k/ﬁ)”j. Substituting in Eq. (2) gives Ac?
=4nGopy or Qx=0.5Q,,. Thus Einstein’s static universe
requires

Q,=1, Qa=0.5, £3.=1.5. (38)

2. Current models of the universe
The solution of Eq. (31) for a flat universe (€;,=0),
assuming G/Gp=1, is
2/3

R=(Q,,/ Q) [sinh( \/Q_ﬁ-r)} ' (39)

or

t=1//Q4 sinh 1 (1/Qa /O RY?), (40)
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so that the current age of the universe obtained by putting
R=1 at =19 in Eq. (40) is

EU:I(]"IIEJ'.! (41)

where

m:[/'\/ﬂ_ﬂﬂil‘lh_l (VA /).

With the use of WMAP observations, Q,=0.27, Q,=0.73
(Eq. 34), and 1(y=1.489. Therefore,

tu~13.71Gyr(4.327x10"" s) (43)

is the current age of the universe. This larger value is
consistent with astronomical observations of the age of
galaxy clusters.

B. Radiation-dominated universe

For radiation-dominated universe n =
(20) and (25) give

G Ry Ry
(Gﬂ) Qm (F) _Qf-r ( R ) +ﬂﬁ
Equation (26) becomes

\/:SRK ) —Q%SR +E”‘] (45)

For a flat universe (Q,=0), and Qx=0

4 o)/ O

If ¢ 1s also constant, G/Gy=1 and

4, and Eqgs.

‘ 1/2

P .

H=—=H
g o

.-:f’c

R=(16Q,,/9)"/*¢!/2. (46)
Because p=(46/c*)T* and p=p,R*

A\ 14
S
1 /4
ol 3H;¢Q,,
32nGoo ?

/4
27Hz R
0 LD
% (SIEHGDH) o &)
Therefore
R~z!l2, T~R 1172, (48)

This implies that 7— as t—0, and this fact alone was the
death knell for the steady-state universe model. From a
very high value immediately after inflation, the universe 1s
thought to have cooled down to temperatures of the order
of 10°-10" K soon after (2-15 min) the Big Bang,
enabling BBN to occur quite early in the radiation-
dominated universe. However, the universe was then filled
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with free electrons, which provided a scattering medium
for radiation, and therefore the universe was opaque. As
the universe cooled, electrons began to bind themselves to
protons electrostatically, and at around T ~ 2967 K, the
number of free electrons dropped precipitously. Without
scatlering by electrons, radiation could now escape freely
and the universe became transparent.” This recombina-
tion i1s thought to have occurred 0.38 Myr (7~0.000041)
after the Big Bang. Stars started forming around 0.3 Gyr
(1~0.0326) and galaxies started forming around | Gyr
(1~0.109). Note that T~2.728Kor the cosmic microwave
background (CMB) blackbody temperature, as deduced
from the COBE and the more recent highly accurate
WMAP spectrum measurements.

C. Inflation

During inflation, n=0, and for a flat universe (€;=0),
Egs. (23) and (25) give

(%) - : Kﬁ%) Q’”mf‘] ' (49)

Equation (4) becomes

R 4 G

ﬁ — g [ ([f_g) Qﬂ;"‘ﬂf‘h] . (50)
Theretore

R"/R=(R"/R)°, (51)

whose solution 1s

R=Rexp (/ H ffr) . (52)
T

This exponential evolution® enabled the Universe to

expand from a small homogeneous patch no bigger than
107%° m to about a meter in about 107" s. Note that the
solution [Eq. (52)] holds for nonconstant G and Q, also.

IV. WHAT IF?

Note that the current models of the universe assume
G and Q, are constant. However, there 1s no reason why
G should remain unchanged as the universe expands. Paul
Dirac' was one of the very first to suggest that G could be
a function of cosmological time. So let us look for
alternative solutions involving a time-varying G.

Time-varying ¢ also requires time-varying cosmolog-
ical parameters, and using Egs. (2) and (3), 1t is easy to
show that for vanishing of the Einstein tensor (mass
conservation)

A 3k

_ N\ (R ]
Py(RY. 1 o | 3
p+3(p+ ) (R)+G S 8nR3] )

instead of Eq. (5). Note that & 1s zero for a flat universe
and the &k term in Eq. (53) must be zero. If the terms in
square brackets in Eq. (53) sum to zero, Eq. (5) remains
the equation of state and the energy conservation is

Gp+
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satisfied. Thus to zeroth order, we will put these terms to
zero in the proposed nonconstant & model. This means

QA:_Q}L({};{{){})}F? (54)

or, equivalently,

Q,=—Q RS | (55)
where

G

Go =f(7), (56)

and prime denotes the derivative with respect to 1.
Equation (4) can be rewritten as

R _2 tm OO AP

=9 {EQ_,\ (n Z)me(a)]. (57)
Or, equivalently,

R'=(2/9)R[2Qr—(n—2)Q), fR"] | (58)

The deceleration parameter becomes

_RR_ [Qa—0.5Q) fR™"
{R}Z ﬂ.-"t +QD fg]%—u :

i

{}’:

Equations (55) and (58) can be integrated with the use of
the condition R=1, R'=2/3, and Q=08 at =1,
provided / can be prescribed. Because the variability of
(v with cosmic time 1s not known, we will use a simple but
plausible form:

f=(x/70)", (60)

satisfying the condition /=1 at t=1;. If m=0, we get the
current constant G models. If m>=0, G increases with cosmic
time, and 1if m<0, it decreases. However, the solution for a
decreasing (; leads to negative values for Q) during the early
phases of expansion implying negative vacuum/dark energy
density, and therefore values of m<0 can be ruled out.

In the radiation-dominated universe, n=4. Using
power-law solutions of the form R=at” and Qp=bt?
and substituting 1n Eqgs. (55) and (38), we get

gbt? '=—Q0 a4 (m 1) (61)

m

and

p(p—1)17=(4/9) [br!~Q,a = (t/7)"], (62)

which immediately leads to
(}':—2,
m+2
4 1
- Omp  Im(m+2)
16 64
0
4 32Q

i
i =

O(m+2)]

p=

so that
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FIG. 1. (Color online) Variation of the normalized radius of the universe (left panel), the normalized gravitational constant (middle panel). and the
deceleration parameter (right panel) with normalized cosmic time. The blue curves correspond to the increasing G model for m=7.6x10"". The red
curve corresponds to the current constant & models of the universe (m=0). The green curve corresponds to the Einstein—de Sitter model. The difference
between the constant & and nonconstant & models 1s imperceptible in the left and nght panels.

R=[320° /9(m+2)c] "/ om+2/4, (63)

m

The question then i1s: What is the appropriate value of m?
Because this question 1s hard to answer a priori, we will
have to use observations to fix the value of m. One way to
determine the correct value of m 1s to demand that the
value of R at which the matter-dominated solution [Eq.
(58)] equals the radiation-dominated solution [Eq. (63)] be
equal to the observed value® of 3x107%.

In the matter-dominated universe, n=3. Also, Qﬂ;
0.27 and Q) =0.73. With the use of these values, the third-
order nonlinear set of ordinary differential equations,
Egs. (53) and (58), were solved for various values of m,
with the ode23s Matlab routine for stiff equations. For
each value of m, the value of i at which this matched the
radiation-dominated solution, Eq. (63), was determined.
[t turns out that for m=7.6x10"* the two solutions
match at R~3x107%. Figure 1 shows the resulting
variation of R, f, and ¢ with cosmic time for this value
of m (blue curve). The red line corresponds to the current
constant G(m=0) models. Clearly, the expansion of the
universe 1s almost 1dentical to that of current constant ¢
models, because the value of m 1s so small. Figure 2 shows
the corresponding variation of the cosmological param-
eter Q4 and the normalized density of matter p/py with
time as the universe expands. It also shows the normalized
acceleration of the universe as a function of cosmic time.
The nonconstant G model solutions are indistinguishable
from those for the current constant ¢ models.

A salient aspect of the matter-dominated solution for
the nonconstant G model 1s noteworthy. Although Qu
remains positive definite and a decreasing function of 7, ‘R
does not go to zero as t—0. The nonzero value of R at
=0 depends on the value of m. The smaller the value of
m, the closer & 1s to zero. For the chosen value of 7.6

10 * for m, this value is roughly 3x10 *. However, this
does not matter, since as t—(), the solution switches over
to the radiation-dominated solution for which k—0 as
1—0. Figure 3 (left panel) shows this.

The vacuum/dark energy density’

Ea=3Ac* 81G=3p_.c*Qn(Gy/G),
so that its normalized value is
Ex=FE\/3p..c"=Qx/f. (64)

The right panel of Fig. 3 shows the variation of £5 with
cosmic time for m=7.6x10 *. It is noteworthy that Ej
increases as t—).

For the radiation-dominated universe, from Eq. (43),

-

iy 14
i Rl
(%)

1 0 W my /4
:< 3Hc ) (9(m+2)fﬂ) 2y (65)

32?7.'6{](1' 32

Thus the solution 1s nearly identical to that of constant G
models, Eq. (47), except for a very slight change in the
power index and the proportionality constant. This means
that the new solution allows for BBN but the exact time
of BBN will be slightly different. The solution also
requires

Qu=[9m(m+2)/64]t*~0.0021387 2, (66)
so that the cosmological constant 1s a rapidly decreasing
function of cosmic time. The normalized vacuum/dark
energy density Is

Er=[9m(m+2)< /64] "2 ~0.0021397 220076
(67)



288 Phys. Essays 25, 2 (2012)

5 T T T T 4 T T T - 5 . 1 : .
3.0r
4t |
3t
= o
(o] 'E 2

oD
L*
0 - ; :
= : f |
s g | 1
Current Modela | - 5 ' | :
0 Eﬁs Medel 0 i i ; | 20 - : !
0 04 08 12 168 2 O 04 08 12 18 2 O 04 08 12 16 2

1= (1h,) 1=(tA,) 1= (1)

FIG. 2. (Color online) As in Fig. 1 but variation of Qu. p/py. and R" with normalized cosmic time. The blue curve corresponds to nonconstant G model
with m=7.6:x10~*, The red curve corresponds to the current constant ¢ models of the universe (m = 0).

This behavior i1s physically more appealing than in current J m—? (equivalently, Ep=1.82x10'%?). For m=7.6x107%,
constant G models in which the vacuum/dark energy — E;~0.00214t 29, and therefore immediately after the end
density remains unchanged as the universe expands. More of the inflation (t~10 325 1~3.4%x10 5”), Exn~1.85x 10°°,
importantly, Ex—o as t—0, which is especially attractive, and

because it allows the vacuum/dark energy density Ej to

approach Planck energy density Ep=mpl,° c*~4.5x10'? Ep/EA~10% (68)

1.5

1.2

0.9¢

R = (R/R,)
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=)  x10° 1= (th,)

FI1G. 3. (Color online) Left panel: normalized radius as a function of normalized cosmic time. The blue line 1s the matter-dominated solution [Eq. (38)]
and the black curve is the radiation-dominated solution [Eq. (60)], both for ~1.055x 10" * m%~! kg. Right panel: normalized vacuum energy densily as
a function of normalized cosmic time. The blue curve corresponds to the increasing G model with m=7.6x 10",



Phys. Essays 25, 2 (2012)

In contrast, in current constant G models, Ejstays
unchanged at 1.853x107°J m * as the universe expands,
and the ratio Ep/E;~2.5x10'* remains incredibly
large.'” Note that

G/G=m/t, (69)

and hence & increases with time 1n the current model,
rapidly in the early phases but very slowly at present,
whereas some of the earlier models have G decreasing
with time or, equivalently, G/G<0.

V. CONCLUSIONS

Based on the theory of large numbers (see Funkhous-
er'? for a modern discourse), Dirac! was one of the very
first to suggest that & could be a function of cosmological
time. In his 1974 paper,” he explored the implications of
this to cosmological models. However, his cosmological
model never got any traction, especially after Edward
Teller stated that the Sun would have been too hot and the
oceans would have boiled off a billion years ago."
However, Teller was wrong, a nonconstant G is plausible
and over the intervening years, there has been sporadic
interest in the topic. This article has explored a model that
matches the radiation-dominated phase to the matter-
dominated phase to infer a plausible vanation of G with
time. This nonconstant ¢ model of the cosmos reproduces
modern cosmological observations as well as the current
constant ¢ models. The postulated functional form for G is
G=Gy(t/79)", where Gy is the current value, 7 is the cosmic
time 7 normalized by the current age of the EdS universe ¢,
(9.207 Gyr), 19 (~1.489) 1s the current normalized age of
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the universe. The inferred value of m 1s approximately
0.00076. The small value of m implies that the variability of
G 1s mostly confined to the very early phases of the big
bang and G 1s very nearly constant at present. The most
attractive aspect of the proposed model 1s that it calls for a
nonconstant cosmological constant, thus avoiding having
to postulate a nonchanging vacuum/dark energy density as
the universe expands. Interestingly, the ratio of the Planck
energy density to the vacuum/dark energy density 1s
roughly 10*® immediately after the end of the inflation
period, unlike current constant G models, where the ratio
remains unbelievably large (~10'%%). Recombination
(R~'~1100) occurs roughly 368 300 yr after the Big Bang,
roughly the same time as in constant ¢ models.
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